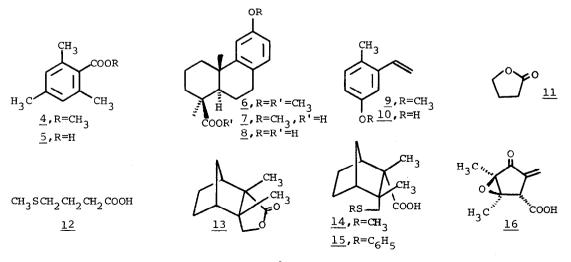
LITHIUM THIOMETHOXIDE: A CONVENIENT MERCAPTIDE REAGENT


T. Ross Kelly,^{*,1} Hemalata M. Dali and Wen-Ghih Tsang Department of Chemistry, Boston College Chestnut Hill, MA 02167 USA

(Received in USA 18 May 1977; received in UK for publication 16 September 1977)

In recent years lithium thiopropoxide $(\underline{1})^2$ and sodium thioethoxide $(\underline{2})^{3,4}$ have been shown to be effective reagents for the cleavage of hindered esters^{2,3,5} and the demethylation of methyl aryl ethers.²⁻⁴ During the course of other studies we had occasion to investigate the possibility of using lithium thiomethoxide ($\underline{3}$) in place of these more complex analogs. We now wish to report that CH₃SLi ($\underline{3}$) possesses a number of properties which render it an attractive alternative to $\underline{1}$ and $\underline{2}$. Preeminent among these properties are ease of preparation, stability, and shelf life.

Both lithium thiopropoxide $(\underline{1})$ and sodium thioethoxide $(\underline{2})$ are prepared <u>in</u> <u>situ</u> under an inert atmosphere and used directly.²⁻⁵ There is no evidence available to indicate whether solutions of $\underline{1}$ or $\underline{2}$ have long-term stability. We have found that lithium thiomethoxide $(\underline{3})$ can be prepared conveniently in bulk and isolated as a stable, free-flowing, off-white solid which can be stored for prolonged periods (>1 year at room temperature) without apparent deterioration in either appearance or reactivity. Although we have stored and utilized $\underline{3}$ under a nitrogen atmosphere, it is unaffected by brief exposure to air (i.e. weighing).

The reactivity of $\underline{3}$ is similar to that of $\underline{1}$ and $\underline{2}$. Thus, treatment^{6,7} of esters $\underline{4}$ and $\underline{6}$ with $\underline{3}$ at 25° for 2 hrs affords the corresponding acids $\underline{5}$ and $\underline{7}$, each in 98% yield.⁶ When $\underline{6}$ is reacted with $\underline{3}$ under more vigorous conditions (120°,36 hrs), ether cleavage also occurs² and $\underline{8}$ is obtained in 95% yield.

3859

Reaction of the aryl ether 9^9 with 3 (160°,2 hr) affords 10 as an oil in 80% yield. The sensitive styrene double bond is unaffected.

Lactones 11 and 13^{11} are opened by 3 (25°,36 hrs) to the methylthio acids 12 and 14 (mp 127-29°) in 69 and 75% yields, respectively (it should be noted that the conversion of $\underline{13}$ to $\underline{14}$ presumably involves $S_{_{\rm N}}^2$ displacement at a neopentyl-like carbon). In contrast to the facile reaction of 13 with 3, opening of 13 with lithium thiophenoxide in HMPA requires reaction temperatures of $\sim 200^{\circ}$ and affords 15 in mediocre yield.

Lithium thiomethoxide has also been used to advantage in the synthesis of $(\frac{+}{-})$ -methylenomycin A (<u>16</u>) by Scarborough and Smith.¹²

Lithium thiomethoxide. A two-necked, round-bottomed flask fitted with a magnetic stirrer and rubber septum and maintained under a nitrogen atmosphere is cooled to 0° in an icebath. Liquid methanethiol (~100g) is added followed by approximately 200cc of ice-cold anhydrous ether. Commercial ethereal methyllithium (~.5 mol) is then introduced via syringe with continued cooling at a rate such that gas (CH_{4}) evolution does not become excessively violent. During the course of the addition of CH₂Li a white solid separates. When addition of CH₂Li is complete the resulting slurry is placed on a rotary evaporator and the ether and unreacted CH₂SH are removed in vacuo (aspirator). Residual volatile material is removed under high vacuum. The product is obtained as a free-flowing solid which is used without further purification; it can be stored under nitrogen in a stoppered flask at room temperature. Protection from light does not appear to be necessary. References and Notes

- Receipt of a Research Career Development Award (1975-80) from the National 1. Institutes of Health is gratefully acknowledged.
- 2.
- 3.
- P.A. Bartlett and W.S. Johnson, <u>Tetrahedron Letters</u>, 4459 (1970). G.I. Feutrill and R.N. Mirrington, <u>Aust. J. Chem.</u>, <u>25</u>, 1731 (1972). <u>Idem.</u>, <u>ibid</u>, <u>25</u>, 1719 (1972); <u>Tetrahedron Letters</u>, 1327 (1970). For a recent report of the use of <u>2</u> to demethylate aryl ethers see S.C. Welch and 4. A.S.C.P. Rao, ibid, 505 (1977).
- For a review see J.E. McMurry, <u>Org. Reactions</u>, <u>24</u>, 187 (1976).
 All reactions were conducted by <u>combining the substrate with 3</u> in hexamethylphosphoric triamide in a ratio of ~1:1:7 (g:g:ml). All yields refer to isolated products.
- To our knowledge the cleavage of esters or ethers with 3 has not been pre-viously reported. Two brief reports of its use in other reactions have appeared, ⁸ but neither indicates how it was prepared. A preparation of 7. CH₃SLi from methanethiol and lithium in liquid ammonia has been reported: H. Pleininger, <u>Ber, 83</u>, 265 (1950).
- R.S. Matthews and T.E. Meteyer, Chem. Comm., 1576 (1971); E. Vilsmaier and 8. G. Becker, Synthesis, 55 (1975).
- Prepared in the course of another study from 2-methyl-5-methoxybenzaldehyde¹⁰ 9. by reaction with methylenetriphenylphosphorane in ether.
- 2-Methyl-5-methoxybenzaldehyde was prepared by the procedure of C. Huynh, S. Julia, R. Lorne and D. Michelot, <u>Bull. Soc. chim. Fr</u>., 4057 (1972). See also J.-P. Gesson and J.-C. Jacquesy, <u>J.C.S. Chem. Comm.</u>, 652 (1976). We are grateful to Dr. Julia for a preprint of their full paper [<u>Bull. Soc.</u> <u>chim. Fr</u>., 1482 (1976)] and additional experimental details. We also thank Prof. Jacquesy for helpful information. 10.
- The preparation of 13 will reported elsewhere. 11.
- R.M. Scarborough and A.B. Smith, III, submitted for publication. We thank 12. Professor Smith for a preprint.